skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kubica, Jeremy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Photometric redshifts will be a key data product for the Rubin Observatory Legacy Survey of Space and Time (LSST) as well as for future ground and space-based surveys. The need for photometric redshifts, or photo-zs, arises from sparse spectroscopic coverage of observed galaxies. LSST is expected to observe billions of objects, making it crucial to have a photo-z estimator that is accurate and efficient. To that end, we present DeepDISC photo-z, a photo-z estimator that is an extension of the DeepDISC framework. The base DeepDISC network simultaneously detects, segments, and classifies objects in multi-band coadded images. We introduce photo-z capabilities to DeepDISC by adding a redshift estimation Region of Interest head, which produces a photo-z probability distribution function for each detected object. On simulated LSST images, DeepDISC photo-z outperforms traditional catalog-based estimators, in both point estimate and probabilistic metrics. We validate DeepDISC by examining dependencies on systematics including galactic extinction, blending and PSF effects. We also examine the impact of the data quality and the size of the training set and model. We find that the biggest factor in DeepDISC photo-z quality is the signal-to-noise of the imaging data, and see a reduction in photo-z scatter approximately proportional to the image data signal-to-noise. Our code is fully public and integrated in the RAIL photo-z package for ease of use and comparison to other codes at https://github.com/LSSTDESC/rail_deepdisc 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract Photometric classifications of supernova (SN) light curves have become necessary to utilize the full potential of large samples of observations obtained from wide-field photometric surveys, such as the Zwicky Transient Facility (ZTF) and the Vera C. Rubin Observatory. Here, we present a photometric classifier for SN light curves that does not rely on redshift information and still maintains comparable accuracy to redshift-dependent classifiers. Our new package, Superphot+, uses a parametric model to extract meaningful features from multiband SN light curves. We train a gradient-boosted machine with fit parameters from 6061 ZTF SNe that pass data quality cuts and are spectroscopically classified as one of five classes: SN Ia, SN II, SN Ib/c, SN IIn, and SLSN-I. Without redshift information, our classifier yields a class-averagedF1-score of 0.61 ± 0.02 and a total accuracy of 0.83 ± 0.01. Including redshift information improves these metrics to 0.71 ± 0.02 and 0.88 ± 0.01, respectively. We assign new class probabilities to 3558 ZTF transients that show SN-like characteristics (based on the ALeRCE Broker light-curve and stamp classifiers) but lack spectroscopic classifications. Finally, we compare our predicted SN labels with those generated by the ALeRCE light-curve classifier, finding that the two classifiers agree on photometric labels for 82% ± 2% of light curves with spectroscopic labels and 72% ± 0% of light curves without spectroscopic labels. Superphot+ is currently classifying ZTF SNe in real time via the ANTARES Broker, and is designed for simple adaptation to six-band Rubin light curves in the future. 
    more » « less